PhD Program International DIM C-BRAINS
Dans son engagement à promouvoir la recherche francilienne à l'échelle internationale, C-BRAINS s'est fixé comme objectif majeur de former une nouvelle génération de chercheurs et de chercheuses en neurosciences et cognition.
Ce programme doctoral international est exclusivement destiné aux étudiants actuellement engagés dans un programme de master et stage hors de France qui ambitionneraient à poursuivre en thèse au sein du périmètre scientifique et régional du DIM C-BRAINS.
Ce programme régional compétitif offre en plus d’une rémunération sur 3 ans, une prime scientifique ainsi qu'une aide à l'installation en Île-de-France soutenue par la FNP.
Cette année encore, ce programme sera mené conjointement avec l’Institut du Cerveau et la Fondation des Neurosciences de Paris.
- 14 novembre 2024 - 30 janvier 2025 : Ouverture des candidatures étudiantes
- 17 février 2025 - 21 mars 2025 : Choix des candidats par les chercheurs
- 7 mai 2025 : Jury de pré-sélection des binômes chercheurs/étudiants
- 4 au 6 juin 2025 : Audition des candidats pré-sélectionnés
Télécharger le déroulé du PhD program international du DIM C-BRAINS.
Télécharger les critères d'éligibilité des candidatures étudiantes.
Cliquez ici pour candidater sur la plateforme en ligne du DIM C-BRAINS.
Télécharger le livret d'accueil des étudiants.
PhD Program international, Édition 2024-2025
Liste des sujets de thèse (1 au total)
Liste des sujets de thèse
Institut de la Vision | Live imaging in patients and cells
Today, the possibility to make a “Disease-in-a-Dish” with patient-based cell models - using induced pluripotent stem cell (hiPSC)-derived retinal cells - represents a chance for drug discovery. These highly relevant cellular models offer a unique opportunity for studying the effects of specific gene defects in the human context to better understand the disease and find anti-degenerative treatment[5,10]. Sacha Reichman’s team at the Vision Institute is working on identifying neuroprotective compounds in hiPSC-derived retinal organoid disease models[11].
To image these organoids live, Kate Grieve’s research group has pioneered a novel, label-free imaging technique called Dynamic Full-Field Optical Coherence Tomography (DFFOCT)[12-15]. This method detects all living cells within complex samples and measures their local activity, offering valuable insights into cell metabolism[12,13], stress[15], mitosis[13], and apoptosis[12]. DFFOCT has already demonstrated its utility in long-term imaging of retinal organoids over several weeks, without any sign of phototoxic effects[13]. However, while DFFOCT contrast relies on the intrinsic optical and biophysical properties of tissues, its specificity remains limited and interpretation can be challenging. We hypothesize that biological specificity can be enhanced through a multi-scale analysis, combining information on cell morphology, activity, metabolism, and scattering properties. By incorporating machine learning and AI, we aim to achieve virtual staining of samples [16,17], offering contrast similar to fluorescence imaging without the need for labelling. Our team has previously published on AI analysis of DFFOCT data in the context of cancer biopsies, and would now like to translate this to retinal organoid data [17].
The primary scientific objective of the ORGAI project is to validate DFFOCT as a versatile and cost-effective method for label-free, longitudinal imaging of patient-derived organoid models. Our goal is to demonstrate that DFFOCT, combined with AI-driven analysis, can create relevant numerical twins of organoids to predict which drugs will be most effective and least toxic for individual patients.
To achieve this, the ORGAI project will take the following steps:
- Patient-based models of organoids will be developed by Sacha Reichman’s team at the Vision Institute. This step develops retinal organoids from patients with inherited retinal dystrophies and tests neuroprotective molecules identified by the Vision Institute to assess structural and functional restoration.
- High throughput label-free microscopes developed by Kate Grieve’s team at the Vision Institute will be used to image the organoids. DFFOCT has proven useful to follow cell viability and cell stress in retinal cell organoids over several weeks. The retinal organoid models of RP undergoing degeneration and with the drug screenings for neuroprotection will be followed with DFFOCT, forming an image database.
- Data Analysis and algorithm development. With DFFOCT, we can quantify the morphology and viability of all cells in the organoids. But AI and automatic data analysis are required to transfer such data into interpretable metrics and to perform multiscale analysis. Steps will involve segmentation and analysis of 3D spatial interactions to quantify organoid health at different stages; time prediction to predict the outcome of long-lasting toxicity and efficacy drug testing and compressed sensing to improve DFFOCT speed and reduce data volume; and finally aggregation of data from multiple organoids under different conditions to build several models.
We anticipate that digital tools developed in the ORGAI project in the specific context of identifying neuroprotective compounds in hiPSC-derived retinal organoid disease models may be generalizable to other samples imaged with DFFOCT label free live microscopy and could therefore beyond this project be applied to imaging with other groups involved in the DIM C-BRAINS network.
1. Audo, I. et al. Invest Ophthalmol Vis Sci 51, 3687–3700 (2010).
2. Mendes, H. F et al. Trends Mol Med 11, 177–185 (2005).
3. Athanasiou, D. et al.. Prog Retin Eye Res 62, 1–23 (2018).
4. Remondelli, P. & Renna, M. Front Mol Neurosci 10, 187 (2017).
5. Avior, Y. et al. Nat Rev Mol Cell Biol 17, 170–182 (2016).
6. Mendes, H. F. & Cheetham, M. E. Hum Mol Genet 17, 3043–3054 (2008).
7. Lin, J. B., et al. Ophthalmology science 2, (2022).
8. Wubben, T. J., et al. Curr Opin Ophthalmol 30, 199–205 (2019).
9. Mikitsh, J. L. et al. Perspect Medicin Chem 6, 11–24 (2014).
10. Mack, D. L., et al. Am J Phys Med Rehabil 93, S155–S168 (2014).
11. Reichman, S. et al. Stem Cells 35, 1176–1188 (2017).
12. Scholler J, et al. Light Sci Appl. 2020 Aug 17;9(1):140.
13. Monfort T, et al. Commun Biol. 2023 Sep 28;6(1):992.
14. Azzollini S, et al. Biomed Opt Express. 2023 Jul 1;14(7):3362
15. Groux K, et al. Commun Biol. 2022 Jun 10;5(1):575.
16. Bai B, et al. Light Sci Appl. 2023 Mar 3;12(1):57.
17. Scholler J, et al. J Med Imag [Internet]. 2023 Jun 1 [cited 2024 Mar 20];10(03). Available from: https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-10/issue-03/034504/Automatic-diagnosis-and-classification-of-breast-surgical-samples-with-dynamic/10.1117/1.JMI.10.3.034504.full